Consistent curved beam element

  • Authors:
  • B. L. Koziey;F. A. Mirza

  • Affiliations:
  • -;-

  • Venue:
  • Computers and Structures
  • Year:
  • 1994

Quantified Score

Hi-index 0.00

Visualization

Abstract

Curved beam finite elements with shear deformation have required the use of reduced integration to provide improved results for thin beams and arches due to the presence of a spurious shear strain mode. It has been found that the spurious shear strain mode results from an inconsistency in the displacement fields used in the formulation of these elements. A new curved beam element has been formulated. By providing a cubic polynomial for approximation of displacements, and a quadratic polynomial for approximation of rotations a consistent formulation is ensured thereby eliminating the spurious mode. A rotational degree of freedom which varies quadratically through the thickness of the element is included. This allows for a parabolic variation of the shear strain and hence eliminates the need for use of the shear correction factor k as required by the Timoshenko beam theory. This rotational degree of freedom also provides a cubic variation of displacements through the depth of the element. Thus, the normal to the centroidal axis is neither straight nor normal after shearing and bending allowing for warping of the cross section. Material nonlinearities are also incorporated, along with the modified Newton-Raphson method for nonlinear analysis. Comparisons are made with the available elasticity solutions and those predicted by the quadratic isoparametric beam element. The results indicate that the consistent beam element provides excellent predictions of the displacements, stresses and plastic zones for both thin and thick beams and arches.