Network coding: a computational perspective

  • Authors:
  • Michael Langberg;Alexander Sprintson;Jehoshua Bruck

  • Affiliations:
  • Computer Science Division, The Open University of Israel, Raanana, Israel;Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX;Department of Electrical Engineering, California Institute of Technology, Pasadena, California

  • Venue:
  • IEEE Transactions on Information Theory
  • Year:
  • 2009

Quantified Score

Hi-index 754.84

Visualization

Abstract

In this work, we study the computational perspective of network coding, focusing on two issues. First, we address the computational complexity of finding a network code for acyclic multicast networks. Second, we address the issue of reducing the amount of computation performed by network nodes. In particular, we consider the problem of finding a network code with the minimum possible number of encoding nodes, i.e., nodes that generate new packets by performing algebraic operations on packets received over incoming links. We present a deterministic algorithm that finds a feasible network code for a multicast network over an underlying graph G(V,E) in time O(|E|kh + |V|k2h2 + h4k3(k+h)), where k is the number of destinations and h is the number of packets. Our algorithm improves the best known running time for network code construction. In addition, our algorithm guarantees that the number of encoding nodes in the obtained network code is upper-bounded by O(h3k2). Next, we address the problem of finding integral and fractional network codes with the minimum number of encoding nodes. We prove that in the majority of settings this problem is NP-hard. However, we show that if h = O(1),k = O(1), and the underlying communication graph is acyclic, then there exists an algorithm that solves this problem in polynomial time.