Equivalence Problems for Circuits over Sets of Natural Numbers

  • Authors:
  • Christian Glaßer;Katrin Herr;Christian Reitwießner;Stephen Travers;Matthias Waldherr

  • Affiliations:
  • Julius-Maximilians-Universität Würzburg, Theoretische Informatik, Würzburg, Germany;Julius-Maximilians-Universität Würzburg, Theoretische Informatik, Würzburg, Germany;Julius-Maximilians-Universität Würzburg, Theoretische Informatik, Würzburg, Germany;Julius-Maximilians-Universität Würzburg, Theoretische Informatik, Würzburg, Germany;Julius-Maximilians-Universität Würzburg, Theoretische Informatik, Würzburg, Germany

  • Venue:
  • Theory of Computing Systems - Special Issue: Symposium on Computer Science, Guest Editors: Sergei Artemov, Volker Diekert and Dima Grigoriev
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

We investigate the complexity of equivalence problems for {∪,∩,−,+,×}-circuits computing sets of natural numbers. These problems were first introduced by Stockmeyer and Meyer (1973). We continue this line of research and give a systematic characterization of the complexity of equivalence problems over sets of natural numbers. Our work shows that equivalence problems capture a wide range of complexity classes like NL, C = L, P,Π2P, PSPACE, NEXP, and beyond. McKenzie and Wagner (2003) studied related membership problems for circuits over sets of natural numbers. Our results also have consequences for these membership problems: We provide an improved upper bound for the case of {∪,∩,−,+,×}-circuits.