Customized learning algorithms for episodic tasks withacyclic state spaces

  • Authors:
  • Theologos Bountourelis;Spyros Reveliotis

  • Affiliations:
  • School of Industrial & Systems Engineering, Georgia Institute of Technology;School of Industrial & Systems Engineering, Georgia Institute of Technology

  • Venue:
  • CASE'09 Proceedings of the fifth annual IEEE international conference on Automation science and engineering
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

The work presented in this paper provides a practical, customized learning algorithm for reinforcement learning tasks that evolve episodically over acyclic state spaces. The presented results are motivated by the Optimal Disassembly Planning (ODP) problem described in [14], and they complement and enhance some earlier developments on this problem that were presented in [15]. In particular, the proposed algorithm is shown to be a substantial improvement of the original algorithm developed in [15], in terms of, both, the involved computational effort and the attained performance, where the latter is measured by the accumulated reward. The new algorithm also leads to a robust performance gain over the typical Q-learning implementations for the considered problem context.