A Nonlinear Derivative Scheme Applied to Edge Detection

  • Authors:
  • Olivier Laligant;Frederic Truchetet

  • Affiliations:
  • Université de Bourgogne, Le Creusot;Université de Bourgogne, Le Creusot

  • Venue:
  • IEEE Transactions on Pattern Analysis and Machine Intelligence
  • Year:
  • 2010

Quantified Score

Hi-index 0.14

Visualization

Abstract

This paper presents a nonlinear derivative approach to addressing the problem of discrete edge detection. This edge detection scheme is based on the nonlinear combination of two polarized derivatives. Its main property is a favorable signal-to-noise ratio ({SNR}) at a very low computation cost and without any regularization. A 2D extension of the method is presented and the benefits of the 2D localization are discussed. The performance of the localization and {SNR} are compared to that obtained using classical edge detection schemes. Tests of the regularized versions and a theoretical estimation of the {SNR} improvement complete this work.