Shape optimized design of microwave dielectric resonators by level-set and topology gradient methods

  • Authors:
  • H. Khalil;S. Bila;M. Aubourg;D. Baillargeat;S. Verdeyme;F. Jouve;C. Delage;T. Chartier

  • Affiliations:
  • XLIM UMR 6172, Université de Limoges-CNRS, 123 avenue Albert Thomas, 87060 Limoges, France;XLIM UMR 6172, Université de Limoges-CNRS, 123 avenue Albert Thomas, 87060 Limoges, France;XLIM UMR 6172, Université de Limoges-CNRS, 123 avenue Albert Thomas, 87060 Limoges, France;XLIM UMR 6172, Université de Limoges-CNRS, 123 avenue Albert Thomas, 87060 Limoges, France;XLIM UMR 6172, Université de Limoges-CNRS, 123 avenue Albert Thomas, 87060 Limoges, France;Laboratoire Jacques-Louis Lions, UMR 7598, Université Paris Diderot, F-75005 Paris, France;CTTC, Parc Ester Technopole, rue Soyouz, 87068 Limoges, France;SPCTS UMR 6638, Université de Limoges-CNRS, 47 à 73 avenue Albert Thomas, 87065 Limoges, France

  • Venue:
  • International Journal of RF and Microwave Computer-Aided Engineering
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

The finite element method is coupled with the topology gradient (TG) and level-set (LS) methods for optimizing the shape of microwave components using a computer-aided design model. On the one hand, the LS approach is based on the classical shape derivative; while on the other hand, the TG method is precisely designed for introducing new perturbations in the optimization domain. These two approaches, which consist in minimizing a cost function related to the component behavior, are first described. Regarding given electrical specifications, these techniques are applied to optimize the distribution of ceramic parts of a dual-mode resonator in order to improve its behavior. The optimized dielectric resonators result in a wide spurious-free stop band. A comparison between classical and optimized dual mode resonator is presented. Theoretical results are then validated by careful measurements. © 2009 Wiley Periodicals, Inc. Int J RF and Microwave CAE 2010.