Realistic radio propagation models (RPMs) for VANET simulations

  • Authors:
  • Francisco J. Martinez;Chai-Keong Toh;Juan-Carlos Cano;Carlos T. Calafate;Pietro Manzoni

  • Affiliations:
  • University of Zaragoza, Spain;University of Hong Kong;Technical University of Valencia, Spain;Technical University of Valencia, Spain;Technical University of Valencia, Spain

  • Venue:
  • WCNC'09 Proceedings of the 2009 IEEE conference on Wireless Communications & Networking Conference
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

Deploying and testing Vehicular Ad hoc Networks (VANETs) involves high cost and intensive labor. Hence simulation is a useful alternative prior to actual implementation. Most works found in the literature employ very simplistic Radio Propagation Models (RPMs), ignoring the dramatic effects presented by buildings on radio signals. In this paper, we present three different RPMs that increase the level of realism, thereby allowing us to obtain more accurate and meaningful results. These models are: (a) the Distance Attenuation Model (DAM), (b) the Building Model (BM), and (c) the Building and Distance Attenuation Model (BDAM). We evaluated these different models and compared them with the Two-ray Ground model implemented in ns-2. We then carried out further study to evaluate the impact of varying some important parameters such as vehicle density and building size on VANET warning message dissemination. Simulation results confirmed that our proposed BDAM significantly affects the percentage of blind vehicles present and the number of received warning messages, and that our models can better reflect realistic scenarios.