A multiscale framework for compressive sensing of video

  • Authors:
  • Jae Young Park;Michael B. Wakin

  • Affiliations:
  • Department of EECS, University of Michigan, Ann Arbor, MI;Colorado School of Mines, Golden, CO

  • Venue:
  • PCS'09 Proceedings of the 27th conference on Picture Coding Symposium
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

Compressive Sensing (CS) allows the highly efficient acquisition of many signals that could be difficult to capture or encode using conventional methods. From a relatively small number of random measurements, a high-dimensional signal can be recovered if it has a sparse or near-sparse representation in a basis known to the decoder. In this paper, we consider the application of CS to video signals in order to lessen the sensing and compression burdens in single- and multi-camera imaging systems. In standard video compression, motion compensation and estimation techniques have led to improved sparse representations that are more easily compressible; we adapt these techniques for the problem of CS recovery. Using a coarse-to-fine reconstruction algorithm, we alternate between the tasks of motion estimation and motion-compensated wavelet-domain signal recovery. We demonstrate that our algorithm allows the recovery of video sequences from fewer measurements than either frame-by-frame or inter-frame difference recovery methods.