A Computational Model of Cerebral Cortex Folding

  • Authors:
  • Jingxin Nie;Gang Li;Lei Guo;Tianming Liu

  • Affiliations:
  • School of Automation, Northwestern Polytechnical University, Xi'an, China;School of Automation, Northwestern Polytechnical University, Xi'an, China;School of Automation, Northwestern Polytechnical University, Xi'an, China;Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, USA

  • Venue:
  • MICCAI '09 Proceedings of the 12th International Conference on Medical Image Computing and Computer-Assisted Intervention: Part II
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

Folding of the human cerebral cortex has intrigued many people for many years. Quantitative description of cortical folding pattern and understanding of the underlying mechanisms have emerged as an important research goal. This paper presents a computational 3D geometric model of cerebral cortex folding that is initialized by MRI data of human fetus brain and deformed under the governance of partial differential equations modeling the cortical growth. The simulations of this 3D geometric model provide computational experiment support to the following hypotheses: 1) Mechanical constraints of the brain skull regulate the cortical folding process. 2) The cortical folding pattern is dependent on the global cell growth rate in the whole cortex. 3) The cortical folding pattern is dependent on relative degrees of tethering of different cortical areas and the initial geometry.