Attribute Vector Guided Groupwise Registration

  • Authors:
  • Qian Wang;Pew-Thian Yap;Guorong Wu;Dinggang Shen

  • Affiliations:
  • Department of Computer Science, University of North Carolina at Chapel Hill, and Department of Radiology and BRIC, University of North Carolina at Chapel Hill,;Department of Radiology and BRIC, University of North Carolina at Chapel Hill,;Department of Radiology and BRIC, University of North Carolina at Chapel Hill,;Department of Radiology and BRIC, University of North Carolina at Chapel Hill,

  • Venue:
  • MICCAI '09 Proceedings of the 12th International Conference on Medical Image Computing and Computer-Assisted Intervention: Part I
  • Year:
  • 2009

Quantified Score

Hi-index 0.01

Visualization

Abstract

Groupwise registration has been recently introduced for simultaneous registration of a group of images with the goal of constructing an unbiased atlas. To this end, direct application of information-theoretic entropy measures on image intensity has achieved various successes. However, simplistic voxelwise utilization of image intensity often neglects important contextual information, which can be provided by more comprehensive geometric and statistical features. In this paper, we employ attribute vectors, instead of image intensities, to guide groupwise registration. In particular, for each voxel, the attribute vector is computed from its multiple-scale neighborhoods to capture geometric information at different scales. Moreover, the probability density function (PDF) of each attribute in the vector is then estimated from the local neighborhood, providing a statistical summary of the underlying anatomical structure. For the purpose of registration, Jensen-Shannon (JS) divergence is used to measure the PDF dissimilarity of each attribute at corresponding locations of different individual images. By minimizing the overall JS divergence in the whole image space and estimating the deformation field of each image simultaneously, we can eventually register all images and build an unbiased atlas. Experimental results indicate that our method yields better registration quality, compared with a popular groupwise registration method.