Congestion Control in Autonomous Decentralized Networks Based on the Lotka-Volterra Competition Model

  • Authors:
  • Pavlos Antoniou;Andreas Pitsillides

  • Affiliations:
  • Networks Research Lab, Computer Science Department, University of Cyprus, Nicosia, Cyprus;Networks Research Lab, Computer Science Department, University of Cyprus, Nicosia, Cyprus

  • Venue:
  • ICANN '09 Proceedings of the 19th International Conference on Artificial Neural Networks: Part II
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

Next generation communication networks are moving towards autonomous infrastructures that are capable of working unattended under dynamically changing conditions. The new network architecture involves interactions among unsophisticated entities which may be characterized by constrained resources. From this mass of interactions collective unpredictable behavior emerges in terms of traffic load variations and link capacity fluctuations, leading to congestion. Biological processes found in nature exhibit desirable properties e.g. self-adaptability and robustness, thus providing a desirable basis for such computing environments. This study focuses on streaming applications in sensor networks and on how congestion can be prevented by regulating the rate of each traffic flow based on the Lotka-Volterra population model. Our strategy involves minimal exchange of information and computation burden and is simple to implement at the individual node. Performance evaluations reveal that our approach achieves adaptability to changing traffic loads, scalability and fairness among flows, while providing graceful performance degradation as the offered load increases.