Fuzzy Relational Compression Applied on Feature Vectors for Infant Cry Recognition

  • Authors:
  • Orion Fausto Reyes-Galaviz;Carlos Alberto Reyes-García

  • Affiliations:
  • Facultad de Ciencias Básicas, Ingeniería y Tecnología, Universidad Autónoma de Tlaxcala, Tlaxcala, México;Instituto Nacional de Astrofísica, Óptica y Electrónica, Tonantzintla, México

  • Venue:
  • MICAI '09 Proceedings of the 8th Mexican International Conference on Artificial Intelligence
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

Data compression is always advisable when it comes to handling and processing information quickly and efficiently. There are two main problems that need to be solved when it comes to handling data; store information in smaller spaces and processes it in the shortest possible time. When it comes to infant cry analysis (ICA), there is always the need to construct large sound repositories from crying babies. Samples that have to be analyzed and be used to train and test pattern recognition algorithms; making this a time consuming task when working with uncompressed feature vectors. In this work, we show a simple, but efficient, method that uses Fuzzy Relational Product (FRP) to compresses the information inside a feature vector, building with this a compressed matrix that will help us recognize two kinds of pathologies in infants; Asphyxia and Deafness. We describe the sound analysis, which consists on the extraction of Mel Frequency Cepstral Coefficients that generate vectors which will later be compressed by using FRP. There is also a description of the infant cry database used in this work, along with the training and testing of a Time Delay Neural Network with the compressed features, which shows a performance of 96.44% with our proposed feature vector compression.