Applying the concurrent collections programming model to asynchronous parallel dense linear algebra

  • Authors:
  • Aparna Chandramowlishwaran;Kathleen Knobe;Richard Vuduc

  • Affiliations:
  • Georgia Institute of Technology, Atlanta, USA;Intel Corporation, Hudson, USA;Georgia Institute of Technology, Atlanta, USA

  • Venue:
  • Proceedings of the 15th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

This poster is a case study on the application of a novel programming model, called Concurrent Collections (CnC), to the implementation of an asynchronous-parallel algorithm for computing the Cholesky factorization of dense matrices. In CnC, the programmer expresses her computation in terms of application-specific operations, partially-ordered by semantic scheduling constraints. We demonstrate the performance potential of CnC in this poster, by showing that our Cholesky implementation nearly matches or exceeds competing vendor-tuned codes and alternative programming models. We conclude that the CnC model is well-suited for expressing asynchronous-parallel algorithms on emerging multicore systems.