Exploration of Periodically Varying Graphs

  • Authors:
  • Paola Flocchini;Bernard Mans;Nicola Santoro

  • Affiliations:
  • University of Ottawa, Ottawa, Canada;Macquarie University, Sydney, Australia;Carleton University, Ottawa, Canada

  • Venue:
  • ISAAC '09 Proceedings of the 20th International Symposium on Algorithms and Computation
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

We study the computability and complexity of the exploration problem in a class of highly dynamic graphs: periodically varying (PV) graphs, where the edges exist only at some (unknown) times defined by the periodic movements of carriers. These graphs naturally model highly dynamic infrastructure-less networks such as public transports with fixed timetables, low earth orbiting (LEO) satellite systems, security guards' tours, etc. We establish necessary conditions for the problem to be solved. We also derive lower bounds on the amount of time required in general, as well as for the PV graphs defined by restricted classes of carriers movements: simple routes, and circular routes. We then prove that the limitations on computability and complexity we have established are indeed tight. We do so constructively presenting two worst case optimal solution algorithms, one for anonymous systems, and one for those with distinct nodes ids.