Bounds and capacity results for the cognitive Z-interference channel

  • Authors:
  • Nan Liu;Ivana Maric;Andrea J. Goldsmith;Shlomo Shamai

  • Affiliations:
  • Stanford University, Stanford, CA;Stanford University, Stanford, CA;Stanford University, Stanford, CA;Technion, Haifa, Israel

  • Venue:
  • ISIT'09 Proceedings of the 2009 IEEE international conference on Symposium on Information Theory - Volume 4
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

We study the discrete memoryless Z-interference channel (ZIC) where the transmitter of the pair that suffers from interference is cognitive. We first provide upper and lower bounds on the capacity of this channel. We then show that, when the channel of the transmitter-receiver pair that does not face interference is noiseless, the two bounds coincide and therefore define the capacity region. The obtained results imply that, unlike in the Gaussian cognitive ZIC, in the considered channel superposition encoding at the non-cognitive transmitter as well as Gel'fand-Pinsker encoding at the cognitive transmitter are needed in order to minimize the impact of interference. As a byproduct of the obtained capacity region, we obtain the capacity result for a generalized Gel'fand-Pinsker problem.