Secure communication with a Byzantine relay

  • Authors:
  • Xiang He;Aylin Yener

  • Affiliations:
  • Wireless Communications and Networking Laboratory, Electrical Engineering Department, The Pennsylvania State University, University Park, PA;Wireless Communications and Networking Laboratory, Electrical Engineering Department, The Pennsylvania State University, University Park, PA

  • Venue:
  • ISIT'09 Proceedings of the 2009 IEEE international conference on Symposium on Information Theory - Volume 3
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

We consider a communication scenario where the source and the destination can communicate only via a relay node who is both an eavesdropper and a Byzantine attacker. Hence for secure communication, two requirements must be met simultaneously: the transmitted message must be kept secret, and a Byzantine attack must be detected reliably. Both a discrete noiseless adder model with the relay receiving the real sum of two signals and a Gaussian model are considered. In both models, the loss in rate due to Byzantine detection can be made arbitrarily small. For the discrete adder model, we show that the probability that the adversary wins decreases exponentially with the number of channel uses. For the Gaussian model, we show that this probability decreases exponentially with the square root of the number of channel uses. The rate derived in this paper is the strong secrecy rate, and the rate loss incurred due to the untrusted and Byzantine relay is measured with respect to the achievable secrecy rate when the relay is untrusted but honest. The result is obtained via a careful combination of the algebraic manipulation detection (AMD) code, the linear wire-tap code constructed from low density parity check (LDPC) code, randomly generated wire-tap code and for the Gaussian model the lattice code.