Flexible control Lyapunov functions

  • Authors:
  • M. Lazar

  • Affiliations:
  • Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands

  • Venue:
  • ACC'09 Proceedings of the 2009 conference on American Control Conference
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

A central tool in systems theory for synthesizing control laws that achieve stability are control Lyapunov functions (CLFs). Classically, a CLF enforces that the resulting closed-loop state trajectory is contained within a cone with a fixed, predefined shape, and which is centered at and converges to a desired converging point. However, such a requirement often proves to be overconservative. In this paper we propose a novel idea that improves the design of CLFs in terms of flexibility, i.e. the CLF is permitted to be locally nonmonotone along the closed-loop trajectory. The focus is on the design of optimization problems that allow certain parameters that define a cone associated with a standard CLF to be decision variables. In this way non-monotonicity of the CLF is explicitly linked with a decision variable that can be optimized on-line. Conservativeness is significantly reduced compared to classical CLFs, which makes flexible CLFs more suitable for stabilization of constrained discrete-time nonlinear systems and real-time control.