Path following for marine surface vessels with rudder and roll constraints: an MPC approach

  • Authors:
  • Zhen Li;Jing Sun;Soryeok Oh

  • Affiliations:
  • Department of Naval Architecture and Marine Engineering, University of Michigan, Ann Arbor, MI;Department of Naval Architecture and Marine Engineering, University of Michigan, Ann Arbor, MI;Department of Naval Architecture and Marine Engineering, University of Michigan, Ann Arbor, MI

  • Venue:
  • ACC'09 Proceedings of the 2009 conference on American Control Conference
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

The problem of path following for marine surface vessels using the rudder control is addressed in this paper. The need to enforce the roll constraints and the fact that the rudder actuation is limited in both amplitude and rate make the model predictive control (MPC) approach a natural choice. The MPC design is based on a linearized model for computational and implementation considerations, while the evaluation of the performance of MPC controller is performed on a nonlinear 4 degree of freedom surface vessel model. The simulation results are presented to verify the effectiveness of the resulting controller and a simulation based tuning process for the controller is also presented. Furthermore, the performance of the path following MPC control in wave fields is evaluated using an integrated maneuvering and seakeeping model, and the simulation confirms its robustness.