Automatic Verification of Fault-Tolerant Register Emulations

  • Authors:
  • Paul C. Attie;Hana Chockler

  • Affiliations:
  • College of Computer Science, Northeastern University, Boston, MA, USA and MIT CSAIL, Cambridge, MA, USA;IBM Research Laboratory, Haifa, Israel

  • Venue:
  • Electronic Notes in Theoretical Computer Science (ENTCS)
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

The design and verification of fault-tolerant distributed algorithms is a complicated task. Usually, the proof of correctness is done manually, and thus depends on the skill of the prover. Using automated verification methods, such as model checking, can greatly simplify the verification. However, model checking of distributed algorithms is often intractable because of the state-explosion problem. In this paper we present a novel approach to verification of quorum-based distributed register emulation algorithms with undetectable crash failures of processes. Our approach is based on projection and abstraction and allows us to reduce the task of model-checking the whole system to fair model-checking of subsystems consisting of a constant number of processes. Our method is highly scalable and can be applied to a large class of algorithms. Aside from efficient verification, it can also be used for finding redundancies in existing algorithms.