Modeling and control of a pilot pH plant using genetic algorithm

  • Authors:
  • W. W. Tan;F. Lu;A. P. Loh;K. C. Tan

  • Affiliations:
  • Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576, Singapore;Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576, Singapore;Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576, Singapore;Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576, Singapore

  • Venue:
  • Engineering Applications of Artificial Intelligence
  • Year:
  • 2005

Quantified Score

Hi-index 0.01

Visualization

Abstract

The work described in this paper aims at exploring the use of computational intelligence (CI) techniques for designing a Wiener-model controller to perform pH control. First, genetic algorithm (GA) is utilized to identify the static inverse titration relationship of a weak-acid strong-base titration process. The resulting model of the inverse neutralization equation then serves as the component in a Wiener model controller that linearizes the pH process. As the bulk of the system non-linearity is cancelled by the inverse model, a setpoint-weighted Proportional plus Integral plus Derivative (PID) controller is used to generate the control signal. A multi-objective evolutionary algorithm (MOEA) is employed to evolve a pareto optimal set of PID parameters in order to achieve the conflicting goals of fast rise time with small overshoots. Experimental results obtained from a laboratory-scale acid-base titration process are then presented to demonstrate the feasibility of the design methodology.