Quantifying load imbalance on virtualized enterprise servers

  • Authors:
  • Emmanuel Arzuaga;David R. Kaeli

  • Affiliations:
  • Northeastern University, Boston, MA, USA;Northeastern University, Boston, MA, USA

  • Venue:
  • Proceedings of the first joint WOSP/SIPEW international conference on Performance engineering
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

Virtualization has been shown to be an attractive path to increase overall system resource utilization. The use of live virtual machine (VM) migration has enabled more effective sharing of system resources across multiple physical servers, resulting in an increase in overall performance. Live VM migration can be used to load balance virtualized clusters. To drive live migration, we need to be able to measure the current load imbalance. Further, we also need to accurately predict the resulting load imbalance produced by any migration. In this paper we present a new metric that captures the load of the physical servers and is a function of the resident VMs. This metric will be used to measure load imbalance and construct a load-balancing VM migration framework. The algorithm for balancing the load of virtualized enterprise servers follows a greedy approach, inductively predicting which VM migration will yield the greatest improvement of the imbalance metric in a particular step. We compare our algorithm to the leading commercially available load balancing solution - VMware's Distributed Resource Scheduler (DRS). Our results show that when we are able to accurately measure system imbalance, we can also predict future system state. We find that we can outperform DRS and improve performance up to 5%. Our results show that our approach does not impose additional performance impact and is comparable to the virtual machine monitor overhead.