Channel state feedback schemes for multiuser MIMO-OFDM downlink

  • Authors:
  • Hooman Shirani-Mehr;Giuseppe Caire

  • Affiliations:
  • Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA;Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA

  • Venue:
  • IEEE Transactions on Communications
  • Year:
  • 2009

Quantified Score

Hi-index 0.06

Visualization

Abstract

Channel state feedback schemes for the MIMO broadcast downlink have been widely studied in the frequencyflat case. This work focuses on the more relevant frequency selective case, where some important new aspects emerge. We consider a MIMO-OFDM broadcast channel and compare achievable ergodic rates under three channel state feedback schemes: analog feedback, direction quantized feedback and "time-domain" channel quantized feedback. The first two schemes are direct extensions of previously proposed schemes. The third scheme is novel, and it is directly inspired by rate-distortion theory of Gaussian correlated sources. For each scheme we derive the conditions under which the system achieves full multiplexing gain. The key difference with respect to the widely treated frequency-flat case is that in MIMO-OFDM the frequencydomain channel transfer function is a Gaussian correlated source. The new time-domain quantization scheme takes advantage of the channel frequency correlation structure and outperforms the other schemes. Furthermore, it is by far simpler to implement than complicated spherical vector quantization. In particular, we observe that no structured codebook design and vector quantization is actually needed for efficient channel state information feedback.