A flexible DSP architecture for MIMO sphere decoding

  • Authors:
  • Chia-Hsiang Yang;Dejan Markovic

  • Affiliations:
  • Department of Electrical Engineering, University of California at Los Angeles, Los Angeles, CA;Department of Electrical Engineering, University of California at Los Angeles, Los Angeles, CA

  • Venue:
  • IEEE Transactions on Circuits and Systems Part I: Regular Papers
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper presents the architecture and circuit design of a sphere decoder for agile multi-input multi-output (MIMO) communication systems. Algorithm and architecture co-design is used to reduce hardware complexity, which enables the proposed sphere decoder to support larger antenna-array sizes and higher order modulations. The proposed architecture is also capable of processing multiple frequency subcarriers for orthogonal frequency-division multiplexing (OFDM) based systems. A 20 times area reduction is achieved, even without interleaving of subcarriers compared to the direct-mapped architecture. The sphere decoder supports multiple configurations: antenna arrays from 2×2 to 16×16, constellation sizes from binary phase-shift keying (BPSK) to 64-QAM (quadrature-amplitude modulation), and 16-128 subcarriers. The peak estimated data rate exceeds 1.5 Gbits/s of ideal throughput in a 16-MHz bandwidth. The core area is estimated at 0.31 mm2 in a standard 90-nm CMOS technology. The estimated power consumption is 33 mW in the 16×16 64-QAM mode at 256 MHz from a 1-V supply voltage.