Fault-Tolerant Routing Algorithm for Network on Chip without Virtual Channels

  • Authors:
  • Yusuke Fukushima;Masaru Fukushi;Susumu Horiguchi

  • Affiliations:
  • -;-;-

  • Venue:
  • DFT '09 Proceedings of the 2009 24th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

Constructing 2D mesh topology network on chips (NoCs) without using virtual channels becomes attractive approach to building future massive multi-core computer systems because of its large amount of bandwidths, less design complexity, and less space consumption of routers. Dead lock problem on NoC is critical because it makes data transmission between nodes unreachable, and inevitable failures in hardware make mesh topology irregular. Although several fault-tolerant techniques are available, deadlock-free routing control algorithm for irregular mesh topology is promising approach to utilize large amount of bandwidths of NoC. The main drawback of available routing control algorithms is that many healthy nodes are deactivated to guarantee deadlock-freeness, and a number of deactivated nodes lead to traffic congestion. In this paper, we propose new fault-tolerant routing algorithm on 2D mesh topology NoC constructed without using virtual channels. The proposed algorithm is fully analyzed its dead lock-freeness, and the experimental result shows that the proposed algorithm can achieve both less number of deactivated nodes and higher throughput.