Design of Coarse-Grained Dynamically Reconfigurable Architecture for DSP Applications

  • Authors:
  • Chenxin Zhang;Thomas Lenart;Henrik Svensson;Viktor Öwall

  • Affiliations:
  • -;-;-;-

  • Venue:
  • RECONFIG '09 Proceedings of the 2009 International Conference on Reconfigurable Computing and FPGAs
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper presents the design and implementation of a coarse-grained reconfigurable architecture, targeting digital signal processing applications. The proposed architecture is constructed from a mesh of resource cells, containing separated processing and memory elements that communicate via a hybrid interconnect network. Parameterizable design of resource cells enables flexible mapping of arbitrary applications at system compile-time, and the feature of dynamic reconfigurability provides mapping possibilities during system run-time to adapt to the current operational and processing conditions. Functionality and flexibility of the proposed architecture is demonstrated through mapping of a radix-22 FFT processor reconfigurable between 32 and 1024 points. Performance evaluation exhibits a great reconfigurability and execution time reduction when compared to a traditional DSP and ARM solution.