Real-time upper limb motion prediction from noninvasive biosignals for physical human-machine interactions

  • Authors:
  • Suncheol Kwon;Jung Kim

  • Affiliations:
  • Dept. of Mechanical Engineering, KAIST, Daejeon, Korea;Dept. of Mechanical Engineering, KAIST, Daejeon, Korea

  • Venue:
  • SMC'09 Proceedings of the 2009 IEEE international conference on Systems, Man and Cybernetics
  • Year:
  • 2009

Quantified Score

Hi-index 0.02

Visualization

Abstract

Human motion and its intention sensing from noninvasive biosignals is one of the significant issues in the field of physical human-machine interactions (pHMI). This paper presents a real-time upper limb motion prediction method using surface electromyography (sEMG) signals for pHMI. The sEMG signals from 5 channels were collected and used to predict the motion by an artificial neural network (ANN) algorithm. We designed a human-machine interaction system to verify the proposed method. Interaction experiments were performed with or without physical contact, and the effects of instances of contact were investigated. The experimental results were compared with controlled experiments using a customized goniometer, which is able to measure upper limb flexion-extension. The results showed that the proposed method was not superior to the use of direct angle measurements; however, it provides sufficient accuracy and a fast response speed for interactions. SEMG-based interactions will become more natural with further studies of human-machine combination models.