Autonomous altitude estimation of a UAV using a single onboard camera

  • Authors:
  • Anoop Cheriany;Jon Andersh;Vassilios Morellas;Nikolaos Papanikolopoulos;Bernard Mettler

  • Affiliations:
  • Department of Computer Science, University of Minnesota, Minneapolis, MN;Department of Computer Science, University of Minnesota, Minneapolis, MN;Department of Computer Science, University of Minnesota, Minneapolis, MN;Department of Computer Science, University of Minnesota, Minneapolis, MN;Department of Aerospace Engineering, University of Minnesota, Minneapolis, MN

  • Venue:
  • IROS'09 Proceedings of the 2009 IEEE/RSJ international conference on Intelligent robots and systems
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

Autonomous estimation of the altitude of an Unmanned Aerial Vehicle (UAV) is extremely important when dealing with flight maneuvers like landing, steady flight, etc. Vision based techniques for solving this problem have been underutilized. In this paper, we propose a new algorithm to estimate the altitude of a UAV from top-down aerial images taken from a single on-board camera. We use a semi-supervised machine learning approach to solve the problem. The basic idea of our technique is to learn the mapping between the texture information contained in an image to a possible altitude value. We learn an over complete sparse basis set from a corpus of unlabeled images capturing the texture variations. This is followed by regression of this basis set against a training set of altitudes. Finally, a spatio-temporal Markov Random Field is modeled over the altitudes in test images, which is maximized over the posterior distribution using the MAP estimate by solving a quadratic optimization problem with L1 regularity constraints. The method is evaluated in a laboratory setting with a real helicopter and is found to provide promising results with sufficiently fast turnaround time.