Exploration of adaptive beaconing for efficient intervehicle safety communication

  • Authors:
  • Robert K. Schmidt;Tim Leinmüller;Elmar Schoch;Frank Kargl;Günter Schäfer

  • Affiliations:
  • Denso automotive;Denso automotive;Ulm University;Ulm University;Technische Universität Ilmenau

  • Venue:
  • IEEE Network: The Magazine of Global Internetworking
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

In the future intervehicle communication will make driving safer, easier, and more comfortable. As a cornerstone of the system, vehicles need to be aware of other vehicles in the vicinity. This cooperative awareness is achieved by beaconing, the exchange of periodic single-hop broadcast messages that include data on the status of a vehicle. While the concept of beaconing has been developed in the first phase of research on VANETs, recent studies have revealed limitations with respect to network performance. Obviously, the frequency of beacon messages directly translates into accuracy of cooperative awareness and thus traffic safety. There is an indisputable trade-off between required bandwidth and achieved accuracy. In this work we analyze this trade-off from different perspectives considering the consequences for safety applications. As a solution to the problem of overloading the channel, we propose to control the offered load by adjusting the beacon frequency dynamically to the current traffic situation while maintaining appropriate accuracy. To find an optimal adaptation, we elaborate on several options that arise when determining the beacon frequency. As a result, we propose situation-adaptive beaconing. It depends on the vehicle's own movement and the movement of surrounding vehicles, macroscopic aspects like the current vehicle density, or microscopic aspects.