Pattern-flipping chase-type decoders with error pattern extracting viterbi algorithm over partial response channels

  • Authors:
  • Soo-Woong Lee;B. V. K. Vijaya Kumar

  • Affiliations:
  • Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA;Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA

  • Venue:
  • IEEE Journal on Selected Areas in Communications
  • Year:
  • 2010

Quantified Score

Hi-index 0.07

Visualization

Abstract

Towards the goal of achieving better error correction performance in data storage systems, iterative soft decoding of low density parity check (LDPC) codes and soft-decision decoding of Reed-Solomon (RS) codes have started receiving increasing research attention. However, even with increased computing power, complexities of soft-decision decoding algorithms are still too high for real products which require high throughput and small hardware area. Another problem is that the performance gains of those approaches are smaller for magnetic recording channels than they are for memoryless additive white Gaussian noise (AWGN) channels. We propose a new soft-decision decoding algorithm (based on the Chase algorithm), which takes advantage of pattern reliability instead of symbol reliability or bit reliability. We also present a modified Viterbi algorithm that provides probable error patterns with corresponding reliabilities. Simulation results of the proposed algorithms over the partial response (PR) channel show attractive performance gains. The proposed algorithm dramatically reduces the number of iterations compared to the conventional Chase2 algorithm over the PR channel.