A team of continuous-action learning automata for noise-tolerant learning of half-spaces

  • Authors:
  • P. S. Sastry;G. D. Nagendra;Naresh Manwani

  • Affiliations:
  • Indian Institute of Science, Bangalore, India;Texas Instruments (India) Pvt. Ltd., Bangalore, India and Indian Institute of Science, Bangalore, India;Indian Institute of Science, Bangalore, India

  • Venue:
  • IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

Learning automata are adaptive decision making devices that are found useful in a variety of machine learning and pattern recognition applications. Although most learning automata methods deal with the case of finitely many actions for the automaton, there are also models of continuous-action-set learning automata (CALA). A team of such CALA can be useful in stochastic optimization problems where one has access only to noise-corrupted values of the objective function. In this paper, we present a novel formulation for noise-tolerant learning of linear classifiers using a CALA team. We consider the general case of nonuniform noise, where the probability that the class label of an example is wrong may be a function of the feature vector of the example. The objective is to learn the underlying separating hyperplane given only such noisy examples.We present an algorithm employing a team of CALA and prove, under some conditions on the class conditional densities, that the algorithm achieves noise-tolerant learning as long as the probability of wrong label for any example is less than 0.5. We also present some empirical results to illustrate the effectiveness of the algorithm.