Dynamic priority re-allocation scheme for quality of service in IEEE 802.11e wireless networks

  • Authors:
  • Ming Li;Hua Zhu;B. Prabhakaran

  • Affiliations:
  • Department of Computer Science, California State University, Fresno, USA 93740;San Diego Research Center, San Diego, USA 92121;The University of Texas at Dallas, Richardson, USA 75083

  • Venue:
  • Wireless Networks
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

In IEEE 802.11e Enhanced Distributed Coordinator Function (EDCF) (In the recently approved IEEE 802.11e standard, EDCF is renamed to enhanced distributed channel access (EDCA). Throughout this paper, we use EDCF for consistency with early work in the literature.), per-flow service differentiation is achieved by maintaining separate queues for different traffic categories (TCs). However, due to its static Quality of Service (QoS) parameter setting, EDCF does not perform adequately under high traffic load (Romdhani et al., Proceedings of IEEE wireless communications and networking conference, 2003). We present an extended performance model of EDCF and analyze conditions for network getting overloaded. With this extended model, we show that the overall throughput of a network can be improved by changing the distribution of the number of active stations (an active station is one that has a pending packet to be sent) over a set of TCs. Hence, we propose to dynamically re-allocate flow priorities evenly in order to maintain high system performance while providing QoS guarantee for individual real-time flows. Our scheme has several interesting features: (1) performance of EDCF is improved; (2) low priority flows are not starved under high traffic load; (3) misuse of priority (misuse of priority means that a flow requests much higher priority than necessary) can be easily handled. Simulations are conducted for both infrastructure-based and Ad hoc models. Results show that dynamic priority re-allocation does not decrease throughput of real-time flows under low to medium loads, while considerable improvement over EDCF is obtained even under high loads, making it easy to support multimedia applications.