Distortion-invariant kernel correlation filters for general object recognition

  • Authors:
  • Rohit Patnaik

  • Affiliations:
  • Carnegie Mellon University

  • Venue:
  • Distortion-invariant kernel correlation filters for general object recognition
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

General object recognition is a specific application of pattern recognition, in which an object in a background must be classified in the presence of several distortions such as aspect-view differences, scale differences, and depression-angle differences. Since the object can be present at different locations in the test input, a classification algorithm must be applied to all possible object locations in the test input. We emphasize one type of classifier, the distortion-invariant filter (DIF), for fast object recognition, since it can be applied to all possible object locations using a fast Fourier transform (FFT) correlation. We refer to distortion-invariant correlation filters simply as DIFs. DIFs all use a combination of training-set images that are representative of the expected distortions in the test set. In this dissertation, we consider a new approach that combines DIFs and the higher-order kernel technique; these form what we refer to as "kernel DIFs." Our objective is to develop higher-order classifiers that can be applied (efficiently and fast) to all possible locations of the object in the test input. All prior kernel DIFs ignored the issue of efficient filter shifts. We detail which kernel DIF formulations are computational realistic to use and why. We discuss the proper way to synthesize DIFs and kernel DIFs for the wide area search case (i.e., when a small filter must be applied to a much larger test input) and the preferable way to perform wide area search with these filters; this is new. We use computer-aided design (CAD) simulated infrared (IR) object imagery and real IR clutter imagery to obtain test results. Our test results on IR data show that a particular kernel DIF, the kernel SDF filter and its new "preprocessed" version, is promising, in terms of both test-set performance and on-line calculations, and is emphasized in this dissertation. We examine the recognition of object variants. We also quantify the effect of different constant-valued object backgrounds in training and tests and the effect of non-constant clutter near the test objects on performance scores; these affect the target-to-background contrast ratio and have not been addressed in any prior DIF IR tests.