Population sizing for the redundant trivial voting mapping

  • Authors:
  • Franz Rothlauf

  • Affiliations:
  • Department of Information Systems 1, University of Mannheim, Mannheim, Germany

  • Venue:
  • GECCO'03 Proceedings of the 2003 international conference on Genetic and evolutionary computation: PartII
  • Year:
  • 2003

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper investigates how the use of the trivial voting (TV) mapping influences the performance of genetic algorithms (GAs). The TV mapping is a redundant representation for binary phenotypes. A population sizing model is presented that quantitatively predicts the influence of the TV mapping and variants of this encoding on the performance of GAs. The results indicate that when using this encoding GA performance depends on the influence of the representation on the initial supply of building blocks. Therefore, GA performance remains unchanged if the TV mapping is uniformly redundant that means on average a phenotype is represented by the same number of genotypes. If the optimal solution is overrepresented, GA performance increases, whereas it decreases if the optimal solution is underrepresented. The results show that redundant representations like the TV mapping do not increase GA performance in general. Higher performance can only be achieved if there is specific knowledge about the structure of the optimal solution that can beneficially be used by the redundant representation.