Tracking complex objects using graphical object models

  • Authors:
  • Leonid Sigal;Ying Zhu;Dorin Comaniciu;Michael Black

  • Affiliations:
  • Department of Computer Science, Brown University, Providence, RI;Real Time Vision & Modeling, Siemens Corporate Research, Princeton, NJ;Integrated Data Systems, Siemens Corporate Research, Princeton, NJ;Department of Computer Science, Brown University, Providence, RI

  • Venue:
  • IWCM'04 Proceedings of the 1st international conference on Complex motion
  • Year:
  • 2004

Quantified Score

Hi-index 0.00

Visualization

Abstract

We present a probabilistic framework for component-based automatic detection and tracking of objects in video. We represent objects as spatio-temporal two-layer graphical models, where each node corresponds to an object or component of an object at a given time, and the edges correspond to learned spatial and temporal constraints. Object detection and tracking is formulated as inference over a directed loopy graph, and is solved with non-parametric belief propagation. This type of object model allows object-detection to make use of temporal consistency (over an arbitrarily sized temporal window), and facilitates robust tracking of the object. The two layer structure of the graphical model allows inference over the entire object as well as individual components. AdaBoost detectors are used to define the likelihood and form proposal distributions for components. Proposal distributions provide 'bottom-up' information that is incorporated into the inference process, enabling automatic object detection and tracking. We illustrate our method by detecting and tracking two classes of objects, vehicles and pedestrians, in video sequences collected using a single grayscale uncalibrated car-mounted moving camera.