Effects of three-objective genetic rule selection on the generalization ability of fuzzy rule-based systems

  • Authors:
  • Hisao Ishibuchi;Takashi Yamamoto

  • Affiliations:
  • Department of Industrial Engineering, Osaka Prefecture University, Sakai, Osaka, Japan;Department of Industrial Engineering, Osaka Prefecture University, Sakai, Osaka, Japan

  • Venue:
  • EMO'03 Proceedings of the 2nd international conference on Evolutionary multi-criterion optimization
  • Year:
  • 2003

Quantified Score

Hi-index 0.00

Visualization

Abstract

One advantage of evolutionary multiobjective optimization (EMO) algorithms over classical approaches is that many non-dominated solutions can be simultaneously obtained by their single run. This paper shows how this advantage can be utilized in genetic rule selection for the design of fuzzy rule-based classification systems. Our genetic rule selection is a two-stage approach. In the first stage, a pre-specified number of candidate rules are extracted from numerical data using a data mining technique. In the second stage, an EMO algorithm is used for finding non-dominated rule sets with respect to three objectives: to maximize the number of correctly classified training patterns, to minimize the number of rules, and to minimize the total rule length. Since the first objective is measured on training patterns, the evolution of rule sets tends to overfit to training patterns. The question is whether the other two objectives work as a safeguard against the overfitting. In this paper, we examine the effect of the three-objective formulation on the generalization ability (i.e., classification rates on test patterns) of obtained rule sets through computer simulations where many non-dominated rule sets are generated using an EMO algorithm for a number of high-dimensional pattern classification problems.