Program development using abstract interpretation (and the ciao system preprocessor)

  • Authors:
  • Manuel V. Hermenegildo;Germán Puebla;Francisco Bueno;Pedro López-García

  • Affiliations:
  • Department of Computer Science, Technical University of Madrid and Departments of Computer Science and Electrical and Computer Engineering, University of New Mexico;Department of Computer Science, Technical University of Madrid;Department of Computer Science, Technical University of Madrid;Department of Computer Science, Technical University of Madrid

  • Venue:
  • SAS'03 Proceedings of the 10th international conference on Static analysis
  • Year:
  • 2003

Quantified Score

Hi-index 0.00

Visualization

Abstract

The technique of Abstract Interpretation has allowed the development of very sophisticated global program analyses which are at the same time provably correct and practical. We present in a tutorial fashion a novel program development framework which uses abstract interpretation as a fundamental tool. The framework uses modular, incremental abstract interpretation to obtain information about the program. This information is used to validate programs, to detect bugs with respect to partial specifications written using assertions (in the program itself and/or in system libraries), to generate and simplify run-time tests, and to perform high-level program transformations such as multiple abstract specialization, parallelization, and resource usage control, all in a provably correct way. In the case of validation and debugging, the assertions can refer to a variety of program points such as procedure entry, procedure exit, points within procedures, or global computations. The system can reason with much richer information than, for example, traditional types. This includes data structure shape (including pointer sharing), bounds on data structure sizes, and other operational variable instantiation properties, as well as procedure-level properties such as determinacy, termination, non-failure, and bounds on resource consumption (time or space cost). CiaoPP, the preprocessor of the Ciao multi-paradigm programming system, which implements the described functionality, will be used to illustrate the fundamental ideas.