Symbolic analysis for GSMP models with one stateful clock

  • Authors:
  • Mikhail Bernadsky;Rajeev Alur

  • Affiliations:
  • Department of Computer and Information Science, University of Pennsylvania;Department of Computer and Information Science, University of Pennsylvania

  • Venue:
  • HSCC'07 Proceedings of the 10th international conference on Hybrid systems: computation and control
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

We consider the problem of verifying reachability properties of stochastic real-time systems modeled as generalized semi-Markov processes (GSMPs). The standard simulation-based techniques for GSMPs are not adequate for solving verification problems, and existing symbolic techniques either require memoryless distributions for firing times, or approximate the problem using discrete time or bounded horizon. In this paper, we present a symbolic solution for the case where firing times are random variables over a rich class of distributions, but only one event is allowed to retain its firing time when a discrete change occurs. The solution allows us to compute the probability that such a GSMP satisfies a property of the form "can the system reach a target, while staying within a set of safe states". We report on illustrative examples and their analysis using our procedure.