Backpropagation in accuracy-based neural learning classifier systems

  • Authors:
  • Toby O'Hara;Larry Bull

  • Affiliations:
  • Faculty of Computing, Engineering & Mathematical Sciences, University of the West of England, Bristol, U.K.;Faculty of Computing, Engineering & Mathematical Sciences, University of the West of England, Bristol, U.K.

  • Venue:
  • IWLCS'03-05 Proceedings of the 2003-2005 international conference on Learning classifier systems
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

Learning Classifier Systems traditionally use a binary string rule representation with wildcards added to allow for generalizations over the problem encoding. We have presented a neural network-based representation to aid their use in complex problem domains. Here each rule's condition and action are represented by a small neural network, evolved through the actions of the genetic algorithm. In this paper we present results from the use of backpropagation in conjunction with the genetic algorithm within XCS. After describing the minor changes required to the standard production system functionality, performance is presented from using backpropagation in a number of ways within the system. Results from both continuous and discrete action tasks indicate that significant decreases in the time taken to reach optimal behaviour can be obtained from the incorporation of the local learning algorithm.