Substitution matrix optimisation for peptide classification

  • Authors:
  • David C. Trudgian;Zheng Rong Yang

  • Affiliations:
  • School of Engineering, Computer Science and Mathematics, University of Exeter, Exeter, UK;School of Engineering, Computer Science and Mathematics, University of Exeter, Exeter, UK

  • Venue:
  • EvoBIO'07 Proceedings of the 5th European conference on Evolutionary computation, machine learning and data mining in bioinformatics
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

The Bio-basis Function Neural Network (BBFNN) is a novel neural architecture for peptide classification that makes use of amino acid mutation matrices and a similarity function to model protein peptide data without encoding. This study presents an Evolutionary Bio-basis network (EBBN), an extension to the BBFNN that uses a self adapting Evolution Strategy to optimise a problem specific substitution matrix for much improved model performance. The EBBN is assessed against BBFNN and multi layer perceptron (MLP) models using three datasets covering cleavage sites, epitope sites, and glycoprotein linkage sites. The method exhibits statistically significant improvements in performance for two of these sets.