Uncertainty analysis based on sensitivities generated using automatic differentiation

  • Authors:
  • Jacob Barhen;David B. Reister

  • Affiliations:
  • Oak Ridge National Laboratory, Oak Ridge;Oak Ridge National Laboratory, Oak Ridge

  • Venue:
  • ICCSA'03 Proceedings of the 2003 international conference on Computational science and its applications: PartII
  • Year:
  • 2003

Quantified Score

Hi-index 0.00

Visualization

Abstract

The objective is to determine confidence limits for the outputs of a mathematical model of a physical system that consists of many interacting computer codes. Each code has many modules that receive inputs, write outputs, and depend on parameters. Several of the outputs of the system of codes can be compared to sensor measurements. The outputs of the system are uncertain because the inputs and parameters of the system are uncertain. The method uses sensitivities to propagate uncertainties from inputs to outputs through the complex chain of modules. Furthermore, the method consistently combines sensor measurements with model outputs to simultaneously obtain best estimates for model parameters and reduce uncertainties in model outputs. The method was applied to a test case where ADIFOR2 was used to calculate sensitivities for the radiation transport code MODTRAN.