Evaluation and analysis of computational complexity for secure multicast models

  • Authors:
  • R. Elijah Blessing;Rhymend Uthariaraj

  • Affiliations:
  • Research scholar, Ramanujan Computing centre, Anna University, Chennai, India;Ramanujan Computing centre, Anna University, Chennai, India

  • Venue:
  • ICCSA'03 Proceedings of the 2003 international conference on Computational science and its applications: PartII
  • Year:
  • 2003

Quantified Score

Hi-index 0.00

Visualization

Abstract

Multicast is an internetwork service that provides efficient delivery of packets from a single source to multiple recipients. When there are large number of members in the group, security and scalability problems arise and an attempt to solve this, gives rise to additional computational complexities at the server. A model is said to be highly efficient if only it has less computational complexity at the server for all membership events and highly secure only when it requires large number of computations to successfully break the multicast model. In this paper, the computational complexities are determined and analyzed for different multicast models. Theoretical evaluation and experimental results prove that for all the membership events, the recently proposed multicast model named LeaSel [3] has computational complexity of O(NSG) when compared to other models which has computational complexity of O(N), where N ≫ NSG. It is also shown that to successfully break LeaSel, the computational complexity is O(SaN) when compared to other models whose computational complexity is O(Sn).