An evaluation of text retrieval methods for similarity search of multi-dimensional NMR-spectra

  • Authors:
  • Alexander Hinneburg;Andrea Porzel;Karina Wolfram

  • Affiliations:
  • Institute of Computer Science, Martin-Luther-University of Halle-Wittenberg, Germany;Leibniz Institute of Plant Biochemistry, Germany;Leibniz Institute of Plant Biochemistry, Germany

  • Venue:
  • BIRD'07 Proceedings of the 1st international conference on Bioinformatics research and development
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

Searching and mining nuclear magnetic resonance (NMR)- spectra of naturally occurring substances is an important task to investigate new potentially useful chemical compounds. Multi-dimensional NMR-spectra are relational objects like documents, but consists of continuous multi-dimensional points called peaks instead of words. We develop several mappings from continuous NMR-spectra to discrete textlike data. With the help of those mappings any text retrieval method can be applied. We evaluate the performance of two retrieval methods, namely the standard vector space model and probabilistic latent semantic indexing (PLSI). PLSI learns hidden topics in the data, which is in case of 2D-NMR data interesting in its owns rights. Additionally, we develop and evaluate a simple direct similarity function, which can detect duplicates of NMR-spectra. Our experiments show that the vector space model as well as PLSI, which are both designed for text data created by humans, can effectively handle the mapped NMR-data originating from natural products. Additionally, PLSI is able to find meaningful "topics" in the NMR-data.