Molecular dynamics optimizer

  • Authors:
  • Swee Chiang Chiam;Kay Chen Tan;Abdullah Al Mamun

  • Affiliations:
  • Department of Electrical and Computer Engineering, National University of Singapore, Singapore; ; 

  • Venue:
  • EMO'07 Proceedings of the 4th international conference on Evolutionary multi-criterion optimization
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

Molecular system possesses two main characteristics that seem to be applicable for the contrary goals of proximity and diversity in multiobjective optimization, namely the converging pressure in potential fields as dictated by the Maxwell-Boltzmann distribution and the inherent drift to a homogenous and uniform equilibrium with maximum entropy, even without any prior knowledge on the geometry and state of the enclosure. Inspired by this association, this paper explores the notion of exploiting molecular motion to solve multiobjective problems. By adapting the algorithmic structure of molecular dynamics, which essentially represents a technique for the computer simulation of molecular motion, a molecular system that is relevant for multiobjective optimization is proposed, known as molecular dynamics optimizer (MDO). The performance of MDO was subsequently compared with other conventional multiobjective optimizers, specifically EA and PSO, and the experimental results demonstrated that MDO is indeed a viable and practical approach for multiobjective optimization.