More precise partition abstractions

  • Authors:
  • Harald Fecher;Michael Huth

  • Affiliations:
  • Christian-Albrechts-University, Kiel, Germany;Imperial College London, United Kingdom

  • Venue:
  • VMCAI'07 Proceedings of the 8th international conference on Verification, model checking, and abstract interpretation
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

We define, for any partition of a state space and for formulas of the modal µ-calculus, two variants of precision for abstractions that have that partition set as state space. These variants are defined via satisfaction parity games in which the Refuter can replace a concrete state with any state in the same partition before, respectively after, a quantifier move. These games are independent of the kind of abstraction. Our first variant makes the abstraction games of de Alfaro et al. model-independent, captures the definition of precision given by Shoham & Grumberg, and corresponds to generalized Kripke modal transition systems. Our second variant is then shown, for a fixed abstraction function, to render more precise abstractions through µ-automata without fairness.We discuss tradeoffs of both variants in terms of the size of abstractions, the perceived cost of their synthesis via theorem provers, and the preservation of equations that are valid over concrete models. Finally, we sketch a combination of both abstraction methods.