Exact error estimates and optimal randomized algorithms for integration

  • Authors:
  • Ivan T. Dimov;Emanouil Atanassov

  • Affiliations:
  • Institute for Parallel Processing, Bulgarian Academy of Sciences, Sofia, Bulgaria and ACET Centre, University of Reading, Reading, UK;Institute for Parallel Processing, Bulgarian Academy of Sciences, Sofia, Bulgaria

  • Venue:
  • NMA'06 Proceedings of the 6th international conference on Numerical methods and applications
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

Exact error estimates for evaluating multi-dimensional integrals are considered. An estimate is called exact if the rates of convergence for the low- and upper-bound estimate coincide. The algorithm with such an exact rate is called optimal. Such an algorithm has an unimprovable rate of convergence. The problem of existing exact estimates and optimal algorithms is discussed for some functional spaces that define the regularity of the integrand. Important for practical computations data classes are considered: classes of functions with bounded derivatives and Hölder type conditions. The aim of the paper is to analyze the performance of two optimal classes of algorithms: deterministic and randomized for computing multi-dimensional integrals. It is also shown how the smoothness of the integrand can be exploited to construct better randomized algorithms.