Parallel and GRID implementation of a large scale air pollution model

  • Authors:
  • Tzvetan Ostromsky;Zahari Zlatev

  • Affiliations:
  • Institute for Parallel Processing, Bulgarian Academy of Sciences, Sofia, Bulgaria;National Environmental Research Institute, Department of Atmospheric Environment, Roskilde, Denmark

  • Venue:
  • NMA'06 Proceedings of the 6th international conference on Numerical methods and applications
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

Large-scale environmental models are powerful tools, designed to meet the increasing demand in various environmental studies. The atmosphere is the most dynamic component of the environment, where the pollutants and other chemical species actively interact with each other, and can quickly be moved in a very long distance. Therefore the advanced modeling is usually done in a large computational domain. Moreover, all relevant physical, chemical and photochemical processes should be taken into account, which heavily depend on the meteorological conditions. All this makes the air pollution modeling a huge and rather difficult computational task, requiring a large amount of computational power. The most powerful supercomputers have been used for the development and test runs of such a model, the Danish Eulerin Model (DEM). Distributed parallel computing via MPI is one of the most efficient techniques in achieving good performance and getting results in real time. The quickly advancing GRID computing technology is another powerful tool that can be used to reach higher level of performance of such a huge model. Both techniques and their inherent problems are discussed in this paper. Results of numerical experiments are presented and analysed and some conclusions are drown, based on the experiments.