A variational framework for spatio-temporal smoothing of fluid motions

  • Authors:
  • Nicolas Papadakis;Étienne Mémin

  • Affiliations:
  • IRISA, INRIA, Rennes Cedex, France;IRISA, INRIA, Rennes Cedex, France

  • Venue:
  • SSVM'07 Proceedings of the 1st international conference on Scale space and variational methods in computer vision
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper, we introduce a variational framework derived from data assimilation principles in order to realize a temporal Bayesian smoothing of fluid flow velocity fields. The velocity measurements are supplied by an optical flow estimator. These noisy measurement are smoothed according to the vorticity-velocity formulation of Navier-Stokes equation. Following optimal control recipes, the associated minimization is conducted through an iterative process involving a forward integration of our dynamical model followed by a backward integration of an adjoint evolution law. Both evolution laws are implemented with second order non-oscillatory scheme. The approach is here validated on a synthetic sequence of turbulent 2D flow provided by Direct Numerical Simulation (DNS) and on a real world meteorological satellite image sequence depicting the evolution of a cyclone.