Increasing system dependability through architecture-based self-repair

  • Authors:
  • David Garlan;Shang-Wen Cheng;Bradley Schmerl

  • Affiliations:
  • School of Computer Science, Carnegie Mellon University, Pittsburgh, PA;School of Computer Science, Carnegie Mellon University, Pittsburgh, PA;School of Computer Science, Carnegie Mellon University, Pittsburgh, PA

  • Venue:
  • Architecting dependable systems
  • Year:
  • 2003

Quantified Score

Hi-index 0.00

Visualization

Abstract

One increasingly important technique for improving system dependability is to provide mechanisms for a system to adapt at run time in order to accommodate varying resources, system errors, and changing requirements. For such "self-repairing" systems one of the hard problems is determining when a change is needed, and knowing what kind of adaptation is required. In this paper we describe a partial solution in which stylized architectural design models are maintained at run time as a vehicle for automatically monitoring system behavior, for detecting when that behavior falls outside of acceptable ranges, and for deciding on a high-level repair strategy. The main innovative feature of the approach is the ability to specialize a generic run time adaptation framework to support particular architectural styles and properties of interest. Specifically, a formal description of an architectural style defines for a family of related systems the conditions under which adaptation should be considered, provides an analytic basis for detecting anomalies, and serves as a basis for developing sound repair strategies.