Petri nets, discrete physics, and distributed quantum computation

  • Authors:
  • Samson Abramsky

  • Affiliations:
  • Oxford University Computing Laboratory

  • Venue:
  • ICATPN'07 Proceedings of the 28th international conference on Applications and theory of Petri nets and other models of concurrency
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

The genius, the success, and the limitation of process calculi is their linguistic character. This provides an ingenious way of studying processes, information flow, etc. without quite knowing, independently of the particular linguistic setting, what any of these notions are. One could try to say that they are implicitly defined by the calculus. But then the fact that there are so many calculi, potential and actual, does not leave us on very firm ground. An important quality of Petri's conception of concurrency is that it does seek to determine fundamental concepts: causality, concurrency, process, etc. in a syntax-independent fashion. Another important point, which may originally have seemed merely eccentric, but now looks rather ahead of its time, is the extent to which Petri's thinking was explicitly influenced by physics (see e.g. [7]. As one example, note that K-density comes from one of Carnap's axiomatizations of relativity). To a large extent, and by design, Net Theory can be seen as a kind of discrete physics: lines are time-like causal flows, cuts are space-like regions, process unfoldings of a marked net are like the solution trajectories of a differential equation.