Dwarf: delay-aware robust forwarding for energy-constrained wireless sensor networks

  • Authors:
  • Mario Strasser;Andreas Meier;Koen Langendoen;Philipp Blum

  • Affiliations:
  • ETH Zurich, Switzerland;ETH Zurich, Switzerland;Delft University of Technology, The Netherlands;Siemens Building Technologies, Switzerland

  • Venue:
  • DCOSS'07 Proceedings of the 3rd IEEE international conference on Distributed computing in sensor systems
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

With the field of wireless sensor networks rapidly maturing, the focus shifts from "easy" deployments, like remote monitoring, to more difficult domains where applications impose strict, real-time constraints on performance. One such class of applications is safety critical systems, like fire and burglar alarms, where events detected by sensor nodes have to be reported reliably and timely to a sink node. A complicating factor is that systems must operate for years without manual intervention, which puts very strong demands on the energy efficiency of protocols running on current sensor-node platforms. Since we are not aware of a solution that meets all requirements of safety-critical systems, i.e. provides reliable data delivery and low latency and low energy consumption, we present Dwarf, an energy-efficient, robust and dependable forwarding algorithm. The core idea is to use unicast-based partial flooding along with a delay-aware node selection strategy. Our analysis and extensive simulations of real-world scenarios show that Dwarf tolerates large fractions of link and node failures, yet is energy efficient enough to allow for an operational lifetime of several years.